Crosstalk and transitions between multiple spatial maps in an attractor neural network model of the hippocampus: phase diagram.
نویسندگان
چکیده
We study the stable phases of an attractor neural network model, with binary units, for hippocampal place cells encoding one-dimensional (1D) or 2D spatial maps or environments. Different maps correspond to random allocations (permutations) of the place fields. Based on replica calculations we show that, below critical levels for the noise in the neural response and for the number of environments, the network activity is spatially localized in one environment. For high noise and loads the network activity extends over space, either uniformly or with spatial heterogeneities due to the crosstalk between the maps, and memory of environments is lost. Remarkably the spatially localized regime is very robust against the neural noise until it reaches its critical level. Numerical simulations are in excellent quantitative agreement with our theoretical predictions.
منابع مشابه
Cross-talk and transitions between multiple spatial maps in an attractor neural network model of the hippocampus: phase diagram (I)
We study the stable phases of an attractor neural network model, with binary units, for hippocampal place cells encoding 1D or 2D spatial maps or environments. Using statistical mechanics tools we show that, below critical values for the noise in the neural response and for the number of environments, the network activity is spatially localized in one environment. We calculate the number of sto...
متن کاملCrosstalk and transitions between multiple spatial maps in an attractor neural network model of the hippocampus: Collective motion of the activity (II)
The dynamics of a neural model for hippocampal place cells storing spatial maps is studied. In the absence of external input, depending on the number of cells and on the values of control parameters (number of environments stored, level of neural noise, average level of activity, connectivity of place cells), a ’clump’ of spatially-localized activity can diffuse, or remains pinned due to crosst...
متن کاملCrosstalk and transitions between multiple spatial maps in an attractor neural network model of the hippocampus: collective motion of the activity.
The dynamics of a neural model for hippocampal place cells storing spatial maps is studied. In the absence of external input, depending on the number of cells and on the values of control parameters (number of environments stored, level of neural noise, average level of activity, connectivity of place cells), a "clump" of spatially localized activity can diffuse or remains pinned due to crossta...
متن کاملStatistical Physics and Representations in Real and Artificial Neural Networks
This document presents the material of two lectures on statistical physics and neural representations, delivered by one of us (R.M.) at the Fundamental Problems in Statistical Physics XIV summer school in July 2017. In a first part, we consider the neural representations of space (maps) in the hippocampus. We introduce an extension of the Hopfield model, able to store multiple spatial maps as c...
متن کاملFinite Connectivity Attractor Neural Networks
Abstract. We study a family of diluted attractor neural networks with a finite average number of (symmetric) connections per neuron. As in finite connectivity spin glasses, their equilibrium properties are described by order parameter functions, for which we derive an integral equation in replica symmetric (RS) approximation. A bifurcation analysis of this equation reveals the locations of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 87 6 شماره
صفحات -
تاریخ انتشار 2013